
151

PARALLEL TREE SEARCH FOR COMBINATORIAL
PROBLEMS: A COMPARATIVE STUDY BETWEEN

OPENMP AND MPI

MICHAËL KRAJECKI, CHRISTOPHE JAILLET, ALAIN BUI

Abstract. In this paper, a general approach for solving combinatorial problems in parallel is pro-
posed. This study is done using the Constraint Satisfaction Problems (CSPs) formalism. The tasks
are generated a priori by considering the subtrees at a particular depthlevel and represent a partition
of the search space. They may be independent or the algorithms may take advantage of a collab-
oration mechanism between the processors. The parallel algorithm introduces few modications
to the sequential one. The tasks arrangement between the processors is studied with different load
balancing strategies, comparing shared memory and a message passing scheme.

Then the Langford problem and optimal Golomb ruler construction are studied and parallelized.
The former is a combinatorial problem and the latter a combinatorial optimization one. The appli-
cations associated with these problems are written in C, using the standard OpenMP library or the
MPI message passing interface. The parallelization of these two applications proved efcient on up
to 128 processors and opens up some new perspectives for these particular problems, such as solv-
ing the already solved instances of the problems more quickly and solving further open instances in
the future.

Keywords: combinatorial problems, optimization, CSPs, tree search, Langford, Golomb ruler,
parallel algorithm, load balancing, shared memory, OpenMP, message passing, MPI.

Introduction

This paper presents combinatorial problems as CSPs (Constraint Satisfaction Prob-
lems) and proposes to solve them with a tree search approach. The algorithms are
parallelized using shared memory and message passing, and we particularly fo-
cus on the load balancing of the generated tasks. Two particular problems are
presented which can be formalized as CSPs: the Langford problem is a combina-
torial problem; the construction of optimal Golomb rulers consists in a combina-
torial optimization one.

Studia Informatica Universalis

152 Michaël Krajecki, Christophe Jaillet, Alain Bui

The rst part of this paper presents CSPs and a general framework for their par-
allel resolution. In a previous work, we have studied parallel resolution of CSPs
with a shared memory [HKS00]. We focused on a simple decomposition strat-
egy of the Search Tree which enables the choice of initial variables to generate
independent tasks. The scalability of this approach is studied within the shared
memory model and compared to a message passing approach. Because of the
tasks irregularity the load balancing question is crucial for parallel combinato-
rial search. Different static and dynamic policies are examined and their shared
memory and message passing implementations are studied.

The second part is dedicated to two particular problems. The Langford prob-
lem is a combinatorial problem and can be presented as a 4-ary to binary CSP.
Two different approaches are studied: Miller’s one provides a simple tree search
enumerative algorithm; the algebraic method introduced by M. Godfrey counts
the solutions without constructing them and consists in evaluating a polynomial
sum.
On the other hand, the optimal Golomb rulers construction is a combinatorial
optimization problem which can be described as a 4-ary CSP that consists in min-
imizing a cost function over all the possible Golomb rulers.

The next section proposes experimental results for these two problems: specic
algorithms are proposed and their parallelization is discussed, shared memory
being implemented with OpenMP and the message passing scheme with MPI. We
particularly focus on the impact of the granularity, the load balancing strategies
provided, and the possibility of introducing a collaboration scheme between the
tasks.

The paper ends with some conclusions on this work, and some perspectives are
introduced.

1. Parallel Tree Search for combinatorial problems

In this section we rst present Constraint Satisfaction Problems (CSPs), and show
that combinatorial problems can be described using this formalism. Then we

SIU 2005

Parallel Tree Search for Combinatorial Problems 153

focus on the parallelization of the classical tree search algorithms and especially
on the ways to balance the tasks between the processors.

1.1. CSP formalism

The Constraint Satisfaction Problem model is widely used to represent and solve
various AI related problems such as Computer Aided Design, Theorem Proving,
Scheduling or Optimization.

A CSP is dened by a set of variables and a set of constraints. A set of al-
lowed values (the domain) is associated to each variable. Solving a CSP means
nding an assignment for each variable that satises all the constraints. Finite
Domains constraint solving is now a well established technique. Typically, these
problems require extensive computation to nd a solution. Most of the suggested
algorithms are enhancements of the basic search algorithm Backtrack (BT). Its
main drawback is the computational cost. Since CSP resolution is NP-Complete,
an efcient (polynomial) general search algorithm is unlikely to exist and paral-
lelization seems to be a good way to achieve further practical improvements.

1.1.1. Definitions

This section gives the basic denitions and useful notations of the Constraint Sat-
isfaction Problems framework.

Definition 1 ([Mon74]). A Constraint Satisfaction Problem P is given as a
tuple P = (X, D, C, R), where:

• X = {X1, . . . , Xn} is a set of n variables.
• D = {D1, . . . , Dn} is a set of n domains where each Di is associated with

Xi.
• C = {C1, . . . , Cm} is a set of m constraints where each constraint Ci is
defined by a set of variables {Xi1 , . . . , Xini

} ⊆ X .
• R = {R1, . . . , Rm} is a set of m relations where each relation Ri defines a
set of ni-tuples on Di1 × · · · × Dini

compatible w.r.t. Ci.

SIU 2005

154 Michaël Krajecki, Christophe Jaillet, Alain Bui

A binary CSP is a problem where all constraints are sets of two variables at
most. In a n-ary CSP the constraints link at most n variables.

An instantiation of a set of variables A is a k-tuple (a1, . . . , ak), representing
an assignment of ai ∈ Di to xi, for all xi ∈ A. A consistent instantiation of A

is a set of assignments that satises all the constraints Ck such that Ck ⊆ A. A
consistent instantiation on X is called a solution of the CSP and a CSP is said
consistent if it has at least one solution.

The two particular problems we will present further in this paper are combina-
torial ones and can be dened as CSPs: the Langford problem as a 4-ary to binary
CSP, and the Golomb ruler construction as 4-ary one.

1.1.2. Solving a CSP

Solving a CSP means either deciding if it admits a solution, nding a solution
if any, nding or counting all the solutions. The main complete method to nd
a solution for a CSP is the basic Backtrack algorithm (in the following, we will
refer to it as BT). Unfortunately, it presents an important drawback: it is expo-
nential in the number n of variables. A lot of works have been done to improve
this algorithm ([HE80, SF94]). We can roughly classify them into the following
categories:

• performing constraints propagation before or during search with a number of
different ltering techniques generally based on Arc-Consistency [Wal93] or
Path-Consistency [Mac77] for binary CSPs, andGeneralized Arc-Consistency
[MM88] for n-ary CSPs.

• improving the search by choosing good variable or value ordering heuristics
for the next variable to be instantiated and value to be assigned [BvR95,
FD95].

• improving the search by a more intelligent backtracking (BJ, CBJ), some
look-ahead strategies (FC, MAC) or a combination of them[Pro93], or some
nogood recording and learning [Dec90, Ter01].

• performing subproblems decomposition [Chm96, DP89, FH95, GLS99].

SIU 2005

Parallel Tree Search for Combinatorial Problems 155

1.1.3. Parallel resolution of CSPs

There are mainly two different approaches to use parallel computation for con-
straint solving. The rst one consists in parallelizing the ltering methods ([Kas89,
RAASR99]) and are specic to CSPs. The second one induces the paralleliza-
tion of the resolution itself using some decomposition technique [LHB92, RK87,
HHMS97, Mér98], but most of these approaches are specic to some cases of
CSPs. We presented an overview on decomposition techniques for a parallel res-
olution of CSPs in [HKS04].

The method we chosen mainly distribute the search space between the proces-
sors by dividing the search tree at a particular depthlevel.

1.2. Solving a combinatorial problem with a tree search algorithm

In [HKS02], we proposed to formalize the combinatorial search as a CSP and
showed that an efcient parallel resolution is possible. This approach is generic
for combinatorial problems and combinatorial optimization ones.

The CSP formalism allows to dene the space of a combinatorial search as a
tree (see gure 1.1):

• a node corresponds to a value of a variable: at depthlevel i we consider the
different possible values of the variable xi (in its domain Di);

• every leaf of the tree symbolizes a sequence which is a solution if it respects
all the constraints dened in the set C.

1.2.1. Generating tasks for parallelism

The tree traversal induced by the explicit construction of all the solutions can be
made in parallel while introducing the following denition for the notion of task:
it is associated to the traversal of a particular subtree. While choosing to develop
all subtrees to a depth k, at most nk independent tasks can be dened and are
accessible using a unique identier.

So, the sequential algorithm can be summarized in C-like mode by:
nbTasks = generateTasks(n,k);

for(task=0 ; task<nbTasks ; task++)

SIU 2005

156 Michaël Krajecki, Christophe Jaillet, Alain Bui

2,1

1

2

3

1,1

2,2 2,3 2,4 2,1 2,2 2,3 2,4

1,2x

x

x

vv

v v v v v v vv v

Figure 1.1: Search Tree; tasks generation.

solveTask(task);

where nbTasks is the number of tasks deduced by the development of all sub-
trees to the depth k by the function generateTasks. The function solveTask
is in charge of traversing the subtree associated with the task numbered task and
of accumulating its result (for example sum it if we plan to count the number of
solutions of a given problem).

Note that except some initializations and the accumulation after the subproblem
is solved, the tasks use the same algorithm as the global one.

1.2.2. Backtracking effects

It is noticed that, when introducing a backtracking scheme on the inconsistent
branches (for which the rst instantiated variables already violate one of the con-
straints), we observe that the computation times associated to the tasks are espe-
cially irregular.

To be efcient, any recursive tree traversal must be avoided in the parallel algo-
rithms and the use of arrays as elementary data structure is strongly recommended.

After the tasks generation, a parallel version of the tree search consists in
traversing the tasks. Thus, the main interest of the parallelization is the balancing
of the tasks between the processors. We will bring this point into focus after we

SIU 2005

Parallel Tree Search for Combinatorial Problems 157

consider the particularities of the combinatorial optimization problems compared
to combinatorial problems.

1.2.3. Particular case of the combinatorial optimization problems

All the particularities presented here are illustrated by the optimal Golomb rulers
construction, introduced in section 3.

Combinatorial optimization problems vs combinatorial problems

In a combinatorial problem the tasks are independent and can be solved in any or-
der (the application is called FIIT: Finite Independent Irregular Tasks application
[Kra99]).

When considering a combinatorial optimization problem, we dene a new con-
straint based on the fact that our goal is to optimize a given quantity: if this quan-
tity is improved, an instantiation that would have been consistent with the old
value of this quantity (consistent and improving the quantity) might not be con-
sistent with its new value (even if globally consistent with the problem, it might
not improve the optimal value anymore). This is the reason why the tasks gener-
ated in the case of combinatorial optimization problems are not really independent
one from another, even though the global result does not differ if the order of the
tasks is changed1.

Forward Checking based on incremental evaluation

We showed in [Jai05] that it is possible to introduce an incremental function,
deduced from the objective function, to evaluate partial instantiations instead of
global ones only. This offers the possibility of knowing the best possible cost of
any eventual solution extending a given partial instantiation, and therefore to skip
the instantiations with no possible improvement.

This can be used to cut branches in the search tree before reaching the leaves.
Added to the initial tree search traversal based on constraints, it introduces some

1and even though any improvement of the quantity to optimize may be ignored

SIU 2005

158 Michaël Krajecki, Christophe Jaillet, Alain Bui

ltering strategy based on optimization, that belongs to the variety of Forward
Checking techniques2.

Collaboration

When running a program in parallel, the tasks are balanced over the processors
and each processor commonly has several tasks to compute. So there are four
different levels of information: global information, processor information, solver
information and task information.

As evoked just before, the tasks generated in the case of a combinatorial opti-
mization problem may not be independent. Because of the search space reduction
when the optimization spreads out, these may take advantage of the results of the
previous ones (by upgrading their value of the quantity to be optimized, if such a
collaboration scheme is used).

The goal of the application is to compute the (global) optimal value of an ob-
jective quantity over a given set of tasks; it can be reached in four different ways:

• by keeping the optimal value private to each task: when a processor gets a
new task, it restores its previous value (but keeps the best of them for the
nal collecting of the results);

• by sharing the best value between all the tasks of each solver (the last val-
ues being gathered before the program concludes): this enables us to cut
branches in the search tree, and even to directly avoid some of the tasks;

• by sharing information at the processors level, without taking into account
the sets of solvers the processors could support;

• by sharing the optimal value between all the tasks and updating it after each
of them: this solution provides an efcient way to decrease the quantity used
by each task; it may reduce the search space more quickly, but may impose
an exchange overhead.

The use of one of these collaboration strategies can be setup in the application
and the effects of this choice can be measured, as mentioned in the section dealing
with the experimental results.

2FC in the eld of the CSPs algorithms

SIU 2005

Parallel Tree Search for Combinatorial Problems 159

Note that we intend to use parallel machines: since the working processors
are equivalent, we attribute exactly one solver to each of them. So we limit our
investigations to three information levels, skipping solver one.

1.3. Load balancing

Dividing the initial problem into subproblems induces quite no computational
overhead, except the effort of balancing the load among the processors. In fact,
each task corresponds to a subtree and the set of tasks denes a partition of the
original search tree. So the accent has to be set on the load balancing strate-
gies. Different options are possible, which may be more or less interesting for
each class of problem: whereas static repartitions may prove efcient for regular
problems (with regular tasks), the dynamic schemes may be more interesting for
irregular ones, among which the combinatorial problems.

Some of the parallel programming languages implement some built-in load
balancing strategies: using this possibility puts the systems in charge to balance
the tasks over the processors with no programming effort, but this does not allow
to develop any ne strategy that may be more adapted to a given class of problem.
So the user will certainly have to develop some explicit load balancing strategies
by himself.

1.3.1. Static repartitions

The static load balancing strategies are such that the tasks allocation to the proces-
sors is computed once at the compiling time. Different possibilities are offered:

1. static repartition: each processor is in charge of Nbtasks
Nbproc consecutive tasks.

This solution seems to be inadequate in our case because taking consecutive
tasks is equivalent to computing at once a larger one (which is divided into
the subproblems of the set of minimal tasks).

2. modulo Nbproc static repartition: each processor receives Nbtasks
Nbproc different

subproblems following a repartition modulo the number of available proces-
sors, Nbproc. In this solution, processor Pi begins with task Ti, continues

SIU 2005

160 Michaël Krajecki, Christophe Jaillet, Alain Bui

with Ti+Nbproc, and so on. Its main advantage is to distribute the so-called
search tree irregularity among the processors.

The static repartitions cannot be efcient if the tasks are too irregular because, for
example, one of the processors may be in charge of a set of tasks consuming on
average twice as much as those given to another processor.

1.3.2. Dynamic schedules

For the dynamic schedules the tasks are dynamically allocated to processors at the
execution time; there is no guarantee on which thread the tasks are executed.

Two major load balancing schemes have to be presented, which differ by the
work distribution initiator.

• the client-server strategies are centralized ones:
A processor is considered as a client if it is working, and as a server if it
proposes to distribute tasks. A server (or a set of servers) is in charge of
all the tasks and only has to distribute them over the clients. As a client
becomes idle, it asks the server for a new task or a new set of tasks. The
server may distribute the tasks in a given order and ”one by one” or several
at the same time, and different distribution strategies can be used.

• the server initiated strategies are distributed ones:
The processors are considered as servers when they are idle or as source
ones when they are busy. All of them begin as source processors, and are
in charge of a given set of tasks. In this strategy, the initiative of the redis-
tribution is in charge of the idle processors: when a processor becomes a
server, it proposes the source processors to take a part of their tasks queue.
The different possibilities are determined by the various ways the tasks are
aither initially divided or redistributed during the execution: there are dif-
ferent matching policies for a server to choose the source processor whose
tasks to take, and even to choose how many tasks (and which ones) to take
from this processor.

For the experimental study (see section 4), we propose to deal with a simple
client-server strategy, and with a server initiated one, for which a server processor

SIU 2005

Parallel Tree Search for Combinatorial Problems 161

chooses as a peer the rst next that still has tasks to compute and takes half of its
remaining tasks.

Dynamic jumping for skipping useless tasks

Although these can be adapted to the particular problems to be treated, the previ-
ous load balancing strategies are generic. In some cases some particular strategies
can be developed that take advantage of the problem’s specicities. With the com-
binatorial optimization problems it is possible to develop a load balancing strategy
that benets from the fact that some or most of the tasks may become useless when
they have to be considered (see 3.4 and table 4 in 4.4.3).

This can be used to adapt a server initiated strategy: an idle processor (server)
will not take a given set of tasks from the source processor it has chosen, but will
take as many as necessary (in a whilemanner) in order to take at least a useful one.
But this may increase the parallel overhead, blocking the tasks lists for a longer
period.

On the other hand a naive client server strategy can be adapted in the same
way. A task is determined by the values given to the rst variables and it can
reveal useless because of the assignment of any of them. If for example it becomes
useless with the value of the third variable3, then all the tasks beginning with these
same 3 values are useless: the rst next task to be eventually useful is the next one
that does not begin with theses values. This gives a way to know which is the task
following a given one if it fails at a given depthlevel: it determines a precedence
graph between the tasks (depending on the failure depthlevel), which can be used
to skip the useless tasks not one by one but with a dynamic jumping manner.

1.3.3. Shared memory implementation

Whereas the message passing model of programming only offers communication
to distribute any information, the shared memory model allows to put the informa-
tion to be shared in a memory accessible by all the processors. It is a user-friendly

3with depthlevel 3 at least

SIU 2005

162 Michaël Krajecki, Christophe Jaillet, Alain Bui

way of programming, that nevertheless may induce some computational overhead,
depending on the way the shared memory is implemented on a given architecture.

We briey present in this section the way to use this model for the implemen-
tation of the two main load balancing strategies we proposed previously.

• Client-server strategy:
With this centralized load balancing strategy, a server holds the list of all the
tasks and it distributes them through the clients on demand. Using shared
memory, the list of tasks can be shared and no centralized server thread is
necessary: the clients take their new tasks from the list, respecting mutual
exclusion on the next_task index.

• Server initiated strategy:
The processors have their own list of tasks. As an idle processor initiates
a redistribution, it looks for a non empty list and for instance takes the half
of them. In order to enable the exchanges, the lists should be placed in
shared memory. Locks are necessary to manage the lists while transferring
or consuming tasks, preventing deadlocks especially when the number of
remaining tasks decreases.

1.4. Langford and Golomb ruler problems

The Langford problem is a combinatorial one that can be presented as a 4-ary or
binary CSP. The goal of the computation is to count all the solutions. We par-
ticularly will study different load balancing strategies on the tree search method,
implemented in shared memory. The Godfrey algebraic approach will be intro-
duced as a second method and parallelized using a message passing model.

For the optimal Golomb ruler construction problem all the sequences are not
equivalent: we have to minimize the length of the constructed solutions as a cost
function. Different collaboration levels between the tasks and load balancing
strategies will be proposed for this combinatorial optimization problem.

A large part of the study presented in sections 2 and 3 can be found with more
details in [JK04b] and [JK04a] respectively.

SIU 2005

Parallel Tree Search for Combinatorial Problems 163

2. The Langford problem

C. Dudley Langford gave his name to a classic permutation problem [Gar56,
Sim83]. While observing his son manipulating blocks of different colours, he
noticed that it was possible to arrange three pairs of blocks of different colours
(yellow, red, blue) in such a way that only one block separates the red pair, two
blocks separate the blue pair and nally three blocks separate the yellow one (see
gure 2.2).

Yellow Red Blue BlueRed Yellow

Figure 2.2: L(2,3): arrangement for 6 blocks of 3 colours: yellow, red
and blue.

The problem has been generalized to any number of colours n and any number
of blocks having the same colour s. L(s, n) consists in searching for the num-
ber of solutions to the Langford problem. In November 1967, Martin Gardner
presented L(2, 4) (two cubes and four colours) as being part of a collection of
small mathematical games and stated that L(2, n) has solutions for all n such that
n = 4k or n = 4k − 1 for k ∈ N \ {0}.

The Langford Problem has been approached in different ways (discrete mathe-
matics results, specic algorithms, specic encoding, . . .): see [Mil99].

At the moment the instances solved in practice in a merely combinatorial man-
ner limit themselves to a small number of colours. In this case, one mentions
the instance L(2, 19) that was solved in 2 years and a half on a DEC Alpha to
300MHz in 1999. In 2002, L(2, 20) was solved with the help of a new algorithm
and the intensive use of a cluster of 3 PCs during one week.

2.1. the Langford Problem as a CSP

Recently, Toby Walsh and Barbara Smith formulated the L(2, n) problem as a 4-
ary Constraint Satisfaction Problem [Wal01, Smi00]. In [HKS01] we proposed it
as a binary CSP with a compact representation.

SIU 2005

164 Michaël Krajecki, Christophe Jaillet, Alain Bui

In this section, we propose to solve the Langford problem with the general tree
search approach introduced in the previous section of this paper.

2.2. Miller’s algorithm: a tree search approach

The Langford problem can be modelized as a tree search problem. In order to
solve L(2, n), we consider the tree of height n and width 2n − 2 (see gure 2.3):

• every node of the tree corresponds to the place in the sequence of the cubes
of a determined colour;

• to the depth p, the rst node corresponds to the place of the rst cube of
colour p in rst position and the ith node corresponds to the positioning of
the rst cube of colour p in position i, where i ∈ [1, 2n − 1 − p]4;

• every leaf of the tree symbolizes the positions of all the cubes;
• a leaf is a solution if it respects the colour constraint dened by the Langford

problem: all the cubes5 must be in different places.

(2,6)(1,5) (2,6)(1,5) (2,6)(1,5)

(1,4) (2,5) (3,6) (1,4) (2,5) (3,6)

(2,6)(1,5) (2,6)(1,5) (2,6)(1,5)

(4,6)(2,4)(1,3)

....

...

Positions of both

color 2 cubes

Positions of both
color 3 cubes

Positions of both

color 1 cubes

...

Figure 2.3: Search tree for L(2, 3).

It is now sufcient to propose a walk through the search tree, in depth rst, to
get a simple sequential algorithm solving the Langford problem6.

It may be taken into consideration that this algorithm explicitly constructs all
the solutions to count them, which is not the case in Godfrey’s algorithm.

4if the rst cube of p-th colour is in position i, then the second one is in position i + p + 1
5rst and second of each colour
6A sequential array-based non-recursive algorithm (written in C) is accessible on page

http://www.lclark.edu/~miller/langford/langford-algorithm.html

SIU 2005

Parallel Tree Search for Combinatorial Problems 165

2.3. Godfrey’s algorithm: algebraic method

In 2002, an algebraic representation of the Langford problem has been proposed
by M. Godfrey.

Consider L(2, 3) and X = (X1, X2, X3, X4, X5, X6). It proposes to modelize
L(2, 3) by F (X, 3) = (X1X3 + X2X4 + X3X5 + X4X6) × (X1X4 + X2X5 +
X3X6) × (X1X5 + X2X6). In this approach, each term represents a position
for both cubes of a given colour and a solution to the problem is equal to the
polynomial coefcient of X1X2X3X4X5X6 in the development. More generally,
a solution to L(2, n) can be deduced from X1X2X3X4X5 . . . X2n.

If G(X, n) = X1 . . . X2nF (X, n) then it has been shown that:
∑

(x1,...,x2n)∈{−1,1}2n

G(X, n)(x1,...x2n) = 22n+1L(2, n)

So:

∑

(x1,...,x2n)∈{−1,1}2n

(
2n∏

i=1

xi)
n∏

i=1

2n−i−1∑

k=1

xkxk+i+1 = 22n+1L(2, n)

The computation of L(2, n) is in O(4n × n2) and an efcient long integer
arithmetic is needed. This principle can be optimized by taking into account the
symmetry of the problem and using the Gray code[RS90].

By using this approach, M. Godfrey has solved L(2, 20) in one week on three
PCs in 2002.

2.3.1. Godfrey’s algorithm in parallel

Section 2.3 introduced the evaluation of L(2, n) by

∑

(x1,...,x2n)∈{−1,1}2n

(
2n∏

i=1

xi)
n∏

i=1

2n−i−1∑

k=1

xkxk+i+1

It is quite obvious that a parallel version can be derived from this formula,
tasks being generated by choosing a value in {−1, 1} for one or more of the xi in
∑

(x1,...,x2n)∈{−1,1}2n . At depthlevel k, as the values of x1, x2, . . . , xk are xed
(either to 1 or -1), a set of 2k independent tasks is generated.

SIU 2005

166 Michaël Krajecki, Christophe Jaillet, Alain Bui

Optimization using the Gray code inside the tasks

2n−i−1∑
k=1

xkxk+i+1 has to be computed for each value of the 2n-uple (x1, . . . , x2n)

in {−1, 1}2n. But the computation time for this sum might be very important. So
it is interesting to do that in a quick way, by changing the value of the xi only
one by one (which allows to get one sum from the previous one). The ordering
of these changes is made using the Gray code sequence, and it is interesting to
pre-calculate it.

The sequence cannot be stored in an array because it would be too large (it
would contain 22n byte values). This is the reason why only one part of the Gray
code sequence is stored in memory and the values are calculated from this array.

The size of the stored part of the Gray code sequence is chosen as large as
possible to be contained in the processor’s cache memory: so the accesses are
fastened and the computation of the Gray code is optimized.

For an efcient use of the SGI R14000 processors, which dispose of 8 MB
of level-2 cache memory, the Gray code sequence is developed recursively up
to depth 22, so that it uses 4 MB (the rest of the memory being used for the
computation itself).

3. Constructing optimal Golomb rulers in parallel

Whereas the Langford problem consists in a combinatorial search, the optimal
Golomb ruler construction is a combinatorial optimization problem, with the in-
herent specicities (see 1.2.3).

A Golomb ruler is an ordered sequence of non negative integers, such that
all the differences between any two of them are different: considering that these
marks refer to positions on a linear scale, the distances on the ruler have all to be
different [Gar72] (see gure 3.4).

It is easy to construct a ruler for any number n of marks, but the interesting
cases deal with minimal length sequences [Ran93]. For example, (0,1,4,6) is op-
timal for 4 marks.

SIU 2005

Parallel Tree Search for Combinatorial Problems 167

3

6

7

7310

1 2 4

Figure 3.4: A non optimal 4 marks Golomb ruler.

These sequences are a mathematical curiosity, but have also many applica-
tions in a wide variety of elds [BG77], including x-ray crystallography, self-
orthogonal codes (for error detection and correction in coding theory) and com-
munication (radio frequencies, radio astronomy and PPM7).

This construction problem is a combinatorial optimization one, and has been
approached in different ways [SSW99, SHL95], including CSPs.

For the rest of this document, let G(n) represent the minimal length of an n

marks Golomb ruler. Our goal is to compute that value (and give the constructed
ruler). Once a ruler of a given length is found, the whole effort consists in nding
a solution with a better length. This is the reason why we formulate the problem
as ”nding the optimal length under a given limit for the Golomb ruler”.

3.1. Tree search algorithm

The construction of optimal Golomb rulers (OGR) can be modelized as a tree
search problem, with the view to minimize the length of the constructed sequence
([DRM98]):

• as the length of an optimal n marks ruler does not exceed 2n−1 − 1 (1+2+
4+ · · ·+2n−2 = 2n−1 −1), it is possible to consider that the root value is 0
and that the values of the nodes are between 1 and 2n−1 −2 (see gure 3.5);

• as it may be far from the nal best one (especially when the number of
marks to be placed increases), the previous bound is practically not so good

7pulse phase modulation

SIU 2005

168 Michaël Krajecki, Christophe Jaillet, Alain Bui

because it imposes to search in a too wide tree: the user can specify a value
closer to the foreseen optimal one;

• every leaf of the tree symbolizes a sequence which is a solution if the values
are ordered and if all the differences are different.

1 2 3 4 5 6 1 2 3 4 5 6

21

. . .

. . .

1 2 . . .

0

Figure 3.5: Search tree for 4 marks Golomb rulers.

3.2. Improvements

The search space can be reduced by applying some simple construction remarks
(see gure 3.6):

• the best possible length best_length is initially set to initial_limit, which
is xed as a parameter with default value 2n−1 − 1;

• a preprocessing step can (if asked) construct a rst Golomb ruler under the
initial limit, not necessary close to the optimal value but certainly much
better than the original one;

• when placing the k-th mark at position pos(k), there still are r = n − k

remaining marks to be placed. With the current one, these have to constitute
a (r+1)-ruler: the corresponding length, remaining_length(r), cannot be
less than 1+2+ · · ·+ r = r(r +1)/2 or than G(r +1) if known: it induces
the following additional constraint:

pos(k) + max(
r(r + 1)

2
, G(r + 1)) < best_length

• mirror solutions can be avoided and thus the search space reduced, by con-
sidering only sequences whose last distance is greater than the rst one: if

SIU 2005

Parallel Tree Search for Combinatorial Problems 169

pos(k)

k (1<k<n)

remaining_length(r!1)

r!1

a=pos(2)

b > a

pos(n!1) pos(n) < best_length

r = n!k (remaining)k (0<k<=n)

remaining_length(r)

pos(k) pos(n) < best_length0=pos(1)

0

Figure 3.6: New constraints based on construction remarks.

the second mark (rst except 0) has already been set with the a value, and
in order for the last distance b to satisfy b ≥ a + 1, another constraint has to
be introduced:

pos(k) + max(
(r − 1)r

2
, G(r)) + a + 1 < best_length

• as the best observed length decreases, more and more inconsistent values
can be ignored.

According to the above global constraint, an efcient ltering algorithm is de-
ned which eliminates remaining values in the the position variables domains in
order to cut branches of the search tree. Note that it becomes a Forward Checking
algorithm (FC in the eld of CSPs).

3.3. Tasks generation

At most (initial_limit − 1)k tasks can be dened while choosing to develop all
subtrees to a depth k. Assume that this construction only keeps the possible tasks

The sequential algorithm can be summarized in C-like mode by:

nbTasks = generateTasks(n,initial_limit,k);

SIU 2005

170 Michaël Krajecki, Christophe Jaillet, Alain Bui

best_length = initial_limit;

for(task=0 ; task<nbTasks ; task++)

if (useful(task,best_length))

best_length = solveTask(task,best_length);

The reader may also remember that this problem is a combinatorial optimiza-
tion one, which has two main consequences (see the experimental results in next
section):

• if such a collaboration scheme is used, the tasks may take advantage of the
results of the previous ones because of the search space reduction when the
value of best_length is improved;

• although only the initially possible tasks were generated, some of them may
become useless when the best_length value decreases: an adapted dynamic
tasks jumping load balancing may improve the efciency of the application.

3.4. Dynamic tasks jumping

7 7 7 7 7 7 7 12 12 12 12 12 15 1715 1715next(3)

17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17next(2)

3 4 5 6 7 8 9 3 5 6 7 8 4 5 7 5 6

0

1 2 43

0 1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 (17)task

mark 3

mark 2

mark 1

13

Figure 3.7: Dynamic jumping for skipping the useless tasks.

As introduced in 1.3.2, it is possible to develop a particular load balancing
scheme that uses the precedence graph of the tasks which can be computed as
a preprocessing statement: if a given task is observed useless, it is possible to

SIU 2005

Parallel Tree Search for Combinatorial Problems 171

determine at which depthlevel it is inconsistent and then what are the rst next
tasks that can be useful (see gure 3.7).

In order to make it more efcient, another preprocessing treatment can be added
that computes, for each task and depthlevel, the rst value of the length that makes
the task fail.

We used this strategy with a client server strategy for the optimal Golomb ruler
construction and had good efciencies (see the experimental results in 4.4.4).

4. Experimental results

4.1. Context

We had experiments with various parallel machines based on different architec-
tures. In order to keep the results comparable one from another, we only present
those obtained on an SGI Origin’38008, but all the phenomenons demonstrated in
this paper were observed likewise on the other machines.

We chose OpenMP to implement shared memory, and MPI for programming
with message passing.

4.1.1. Shared memory with OpenMP

The OpenMP environment has evolved to a standard for shared memory paral-
lelism [Ope05, CDK+00] 9. It is a complete API for programming shared memory
multiprocessor systems and enables to obtain a parallel code easily since it is kept
quite close to the sequential one. In addition, it makes it possible to test different
work distribution policies. OpenMP derives from the ANSI X3115 efforts and
is a set of compiler directives and runtime library routines that extend a sequen-
tial programming language (C or FORTRAN) to express with a shared memory.
It conforms to the SPMD programming language style. One key advantage of
OpenMP, compared to MPI, is that the development cost of a message passing
version would be much more important. It would potentially induce numerous

8768 R14000 processors at 500 MHz, 500 MB of memory per processor
9see also pThreads or DSM (Distributed Shared Memory)

SIU 2005

172 Michaël Krajecki, Christophe Jaillet, Alain Bui

additional programming efforts to deal with the crucial load balancing problem
and especially for Irregular Applications, which is the case here.

The main feature of our proposal is Coarse-Grained parallelization which uses
only one level of parallel for loop or only one parallel section, consisting in the
resolution of subproblems after distributing them over the processors.

Tasks allocation in a parallel loop

Within the OpenMP environment the tasks allocation to the processors (threads)
can be done very easily by one compilation directive added to the for loop. This
allows to balance the tasks with static schedules (static or static modulo Nbproc
repartitions) or dynamically.

For example, to have a dynamic for schedule, an OpenMP directive is added
before the loop:

nbTasks = generateTasks(n,k);

#pragma omp parallel for schedule(dynamic)

for(task=0 ; task<nbTasks ; task++)

solveTask(task);

Tasks allocation in a parallel region

OpenMP also provides another way to produce parallel applications. A parallel
region is executed by all the processors. The user is explicitly in charge of dis-
tributing the load among the processors.

• For example if we want to redene the static repartition with an OpenMP
parallel region, the following statements can be used:

nbTasks = generateTasks(n,k);

#pragma omp parallel

{

int nbp, p, start, end, task;

nbp = omp_get_num_threads();

p = omp_get_thread_num();

start = p * nbTasks / nbp;

end = (p+1) * nbTasks / nbp;

SIU 2005

Parallel Tree Search for Combinatorial Problems 173

for(task=start ; task<end ; task++)

solveTask(task);

}

The variables start and end are introduced in order to explicitly balance
the load to the processors. Because these are dened in the parallel region,
each processor has its own copy of these variables.

• The dynamic client server repartitions are implemented using a shared vari-
able nextTask which indicates the index-number of the next task to be
computed. When a processor needs a new task, it accesses this variable in a
critical way (only one processor at the same time) by using critical sections
or locks, and eventually skips the useless tasks (dynamic jumping schedule
for combinatorial optimization problems: see 1.3.2).

• Server initiated strategies can also be developed with OpenMP parallel re-
gions. The set of tasks is globally shared and a queue is characterized by two
variables begin and end. Each processor has its own tasks queue and they
have to share the lists informations; so we use the shared arrays Begin and
End: Begin[i] and End[i] correspond to the processor i and are changed
in critical sections determined by locks.

Computational variability using OpenMP

A remark has to be made on the computation time irregularity observed for the
OpenMP versions of our programs: the computation times had a 0% to 320%
irregularity10 with large instances of our problems, especially with an increasing
number of processors (see 4.2.3).

Note that such an irregularity was observed with OpenMP on all the different
parallel machines we used (an SGI Origin’3800, an IBM SP Power 3 NH2 and a
Sunre 6800, which are SMP11 or CC-NUMA12 machines), but never when using
POSIX threads or MPI.

10relative standard deviation
11SMP: Symmetric MultiProcessor
12CC-NUMA: Cache-Coherent Non Uniform Memory Access

SIU 2005

174 Michaël Krajecki, Christophe Jaillet, Alain Bui

We proved in [Jai05] that this anomaly is due to the OpemMP compiler allo-
cation strategy which induces cache misses and hence this variability. The effects
are increased by the fact that our algorithm uses a lot of memory and is based on
a very large number of memory accesses, in private memory as well as in shared
one. This phenomenon can be observed on any application with critical and inten-
sive memory use, which is the case for any combinatorial search or combinatorial
optimization problem.

Because of the irregularity observed, the computation had to be repeated 20 to
50 times for each experiment and we only retained the best value (which corre-
sponds to the ”good” memory allocation case).

We developed a solution to correct this phenomenon which evicts any compu-
tation time variability with no computation or memory overhead [Jai05].

4.1.2. Parallel version using a Message Passing Interface

Message passing is a programming paradigm used widely on parallel computers,
especially with distributed memory13. The Message Passing Interface (MPI) is
a standard approach for message passing programming [Pac96]. This standard
denes the functioning and user interface for a large number of message-passing
capabilities and with a large degree of portability.

As it represents the simplest solution for the user, the tasks allocation is done by
a client/server scheme. This allows different strategies based on different ways to
choose the next task to be distributed to a given processor. We decided to limit our
rst developments to a simple client-server strategy (the tasks being distributed
one by one on demand in their natural order) and to the dynamic tasks jumping
provided for combinatorial optimization problems (which is limited to the OGR
construction in this experimental study).

13see also PVM (Parallel Virtual Machine) for example

SIU 2005

Parallel Tree Search for Combinatorial Problems 175

4.2. Miller’s algorithm for the Langford problem in parallel using
shared memory

The experiments we led are based on OpenMP and enabled us to measure the
efciencies provided by the OpenMP for loop schedules, and to compare them to
the corresponding hand-made parallel region schedules.

This study was limited to 64 processors.

4.2.1. OpenMP parallel for loop schedules

First, a comparison between the three repartition policies for the Search Tree de-
composition strategy is provided.

As we are counting the number of solutions of the Langford problem, the algo-
rithm can be summarized in C-like mode by:

nbTasks = generateTasks(n,k);

nbSolutions = 0;

#pragma omp parallel for schedule(dynamic) \

reduction(+:nbSolutions)

for(task=0 ; task<nbTasks ; task++)

nbSolutions += solveTask(task);

At the end, the variable nbSolutions contains the number of solutions for
L(2, n). Note that the reduction clause is necessary to ensure the correctness of
the computation.

Table 1 shows the execution times for L(2, 14) where k (the subdivision depth)
is equal to 5. As expected, the static repartition is not very efcient when the num-
ber of processors increases. It is interesting to notice that the modulo repartition
is not so far from the dynamic repartition which is the best in our experiment.

Finally, the efciency observed is very good. With 64 processors, the dynamic
repartition obtains an efciency superior to 85%.

4.2.2. OpenMP parallel region schedules

We redened the 3 above schedules using parallel regions.

SIU 2005

176 Michaël Krajecki, Christophe Jaillet, Alain Bui

Procs Static Modulo Dynamic

1 223.13 224.26 234.7

2 119.5 116.4 114.72

4 63.56 58.58 56.67

8 57.24 29.33 28.19

16 33.49 14.72 14.05

32 22.81 7.42 7.03

64 16.46 17.45 4.24

Table 1: Execution times for L(2, 14) in seconds (depthlevel 5).

Figure 4.8 gives an overview of the different experiments. The static schedules
had comparable results, even for those implemented with parallel regions.

The efciencies observed are very good with a dynamic for loop load balancing
scheme. The dynamic schedule with a parallel region, using a shared variable
accessed in a critical way, is not very efcient with more than 16 processors. The
reader shall take into account that the execution time for 64 processors is less than
5 seconds.

For the Langford problem, these experiments show that the best solution is to
take advantage of the parallel for loop provided by OpenMP with the dynamic
schedule clause. To reach good efciency when the number of processors is large,
the programmer should be ready to dene a more accurate solution to manage the
load avoiding the bottleneck introduced by this critical variable.

4.2.3. Computation time irregularity with OpenMP

As we mentioned in 4.1.1, the computation times were really irregular. Thus each
computation has been repeated 50 times.

As an illustration of this irregularity, L(2, 14) with the dynamic for loop and
2 processors is solved in 114-115 seconds 41 times and in 224-250 seconds in 9
different experiments. When the number of processors increases, this instability is

SIU 2005

Parallel Tree Search for Combinatorial Problems 177

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70

ef
fic

ie
nc

y

number of processors

for static
for dynamic
region mod

region dynamic

Figure 4.8: Efciency for L(2, 14).

observed more often: L(2, 14) was solved on 32 processors using the modulo for
loop in 7.42 seconds only 1 time in 5 tries on average: on 50 tries, the execution
time was close to 60-65 seconds for 21 tries. See [Jai05] for more detailed results.

Because of this computational variability, we had to consider only the best
computation times observed, which correspond to the ”good” memory allocation
cases.

4.3. A parallel version of Godfrey’s algorithm using a Message Pass-
ing Interface

Since all the tasks are available, their allocation is performed dynamically: the
server sends the tasks indexes to the clients and then, when a client receives such
a number, it dynamically constructs the task by deducing from the task index the
values to be affected to the rst position variables.

SIU 2005

178 Michaël Krajecki, Christophe Jaillet, Alain Bui

4.3.1. Solving L(2, 16)

Table 2 sums up the results obtained for L(2, 16) with up to 16 processors. The
depthlevel successively equals 6, 7, 8 and 9. The number of tasks is respectively
64, 128, 256 and 512.

Procs k=6 k=7 k=8 k=9

1 972 991 972 993

4 339 334 330 333

8 153 147 140 142

12 121 132 130 108

16 78 71 73 75

Table 2: Execution times for L(2, 16) in seconds.

These experiments show that the parallelization of the Langford problem is
also effective using Godfrey’s approach. By using 16 processors, L(2,16) can be
solved in less than 80 seconds (on a SGI’3800).

The reader may remember that only p− 1 processors on p effectively solve the
problem because of the server used to distribute dynamically the set of tasks. By
dening a static distribution or a fully distributed dynamic distribution, it should
be possible to use effectively the p processors to solve the problem.

Figure 4.9 shows the speed-ups. The server is taken into account in the evalua-
tion. This is the reason why they are not so good with 4 processors, but when the
number of processors increases, the penalty induced by the server is less impor-
tant. Using 16 processors, the speed-up is near 14 and the efciency is equal to
85% while the optimal efciency is equal to 94% taking the server into account.

4.3.2. Some interesting results on L(2, 19) and L(2, 20)

Considering the good results provided by the parallelization of Godfrey’s method
on L(2, 16), some experiments have been conducted on L(2, 19) and L(2, 20).

SIU 2005

Parallel Tree Search for Combinatorial Problems 179

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14 16

sp
ee

d-
up

number of processors

k=6
k=7
k=8
k=9

Figure 4.9: Speed-up for L(2, 16).

Due to the long execution time for both problems, no result can be exhibited
with less than 8 processors on the SGI’3800.

The impact of the depthlevel on L(2, 19)

Table 3 contains the execution times in seconds for 8, 12, 16, 32 and 64 processors.
The depthlevel k moves from 5 to 10. It is noticeable that for k = 5, only 32 tasks
are generated which is not enough to farm 64 processors.

The depthlevel is quite important when the number of processors increases. Us-
ing 64 processors, the execution time is reduced by 2 when the depthlevel moves
from 6 to 10.

This fact can be explained by two factors. First, the set of tasks must be larger
than the number of processors to be able to correct the load imbalance. Second,
by xing more values for the xi (which is the case when the depthlevel increases),
the memory needed to solve the task (and especially to construct the Gray code)
is less important. Then a cache memory factor impacts the results in a signicant
way.

SIU 2005

180 Michaël Krajecki, Christophe Jaillet, Alain Bui

Procs k=5 k=6 k=7 k=8 k=9 k=10

8 9720 9735 9307 8975 8987 8935

12 5950 5917 5941 5790 5697 5670

16 5790 4842 4392 4290 4251 4214

32 3859 2891 2433 2175 2083 2060

64 2031 1940 1473 1209 1094 1031

Table 3: Execution times for L(2, 19) in seconds.

The conclusion of these experiments is that L(2, 19) can be solved in less than
20 minutes, to be compared to the rst results published by Miller on his web
page.

L(2, 20) can be solved in 1 hour and even less

To conclude the experiments, L(2, 20) has been solved using 8, 16, 32, 64 and
128 processors. The depthlevel is equal to 12, so 4096 tasks are generated and
distributed among the processors.

The average execution time of a task is close to 69 seconds. The minimum and
maximum times are respectively 67 and 80 seconds.

The execution time on 32 processors is 9208 seconds and is reduced to 4530
with 64 processors. It is interesting to note that the execution time is reduced by
half when the number of processors is doubled. Finally, L(2, 20) is solved in 2274
seconds using 128 processors.

The use of parallelism and the algorithm’s improvements have reduced the res-
olution time of L(2, 20) from one week to 38 minutes! This result opens the
perspective of L(2, 23) and L(2, 24), but with lots of processors during a very
long period.

SIU 2005

Parallel Tree Search for Combinatorial Problems 181

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 20 40 60 80 100 120 140

ex
ec

ut
io

n
tim

e

number of processors

L(2,20)

Figure 4.10: Execution times for L(2, 20) in seconds.

4.3.3. L(2, 23) and L(2, 24)

We ported our application to CONFIIT, a fully distributed peer-to-peer middle-
ware developed by our team [KFM04].

This allowed us to solve L(2, 23) = 3, 799, 455, 942, 515, 488 in April 2004
after 4 days of computation over about 85 processors: Sunblade 100, PCs (Intel
PIV and Xeon, AMD Athlon XP) and a Sunre’6800 with 24 processors.

We obtained L(2, 24) in April 2005 after 3 months’ computation with 12 to
15 processors: there are 46, 845, 158, 056, 515, 936 ∼ 4.7 1016 solutions to this
problem (when evicting the symmetric ones). These results are more fully devel-
oped in [KFJ+05].

4.4. Constructing optimal Golomb rulers in parallel

The Langford problem is a combinatorial one. We are going to present you the
experimental results obtained for the OGR (optimal Golomb ruler) construction,
which is a combinatorial optimization one. These illustrate the study presented in
section 3.

SIU 2005

182 Michaël Krajecki, Christophe Jaillet, Alain Bui

4.4.1. Collaboration

Our rst experiments with OpenMP concerning the collaboration immediately
proved that collaboration has to be used at least between the tasks, and that hardly
any exchange overhead is induced by the full collaboration: the algorithm takes a
real advantage from collecting the Global_best value as a shared information.

4.4.2. Granularity

Considering a given problem with a given value of initial_limit, the choice of
the depthlevel may inuence the computational times, as shown by the following
example, where G(13) was computed with initial_limit = 200 on 32 processors
(here with OpenMP with a dynamic for schedule; see gure 4.11).

• The depthlevel must not be too small because a good load balancing is
impossible if the average number of tasks per processor is not important
enough. For example, with depthlevel 1, only 45 tasks were generated: this
created a high irregularity (one of the processors nishing in 16.3 seconds
and another one in 696.2)

• If the number of tasks becomes too important, the processors may spend
some more time in racing to have new tasks instead of computing the tasks
themselves. For instance, we had still no answer after 40,000 seconds with
depthlevel 5 (for G(13) with 32 processors and initial_limit = 200).

4.4.3. Useless tasks

The results we obtained show that, depending on the initial limit given for the
optimization, most of the initially useful tasks may actually have became useless
when they have to be treated, because of the bound improvement (see table 4).

This phenomenon is especially observed if the initial limit is far from the op-
timal one. It induces that, when a processor becomes idle, it has to take several
tasks before getting an interesting one. This creates a high concurrency for the
tasks allocation which may considerably reduce computation efciency.
Thus, the naive ”one by one” schedules cannot have very good efciencies.

SIU 2005

Parallel Tree Search for Combinatorial Problems 183

 0

 100

 200

 300

 400

 500

 600

 700

 1 1.5 2 2.5 3 3.5 4

ex
ec

ut
io

n
tim

e

division depthlevel

division 1 to 4

Figure 4.11: G(13), initial_limit=200, inuence of the granularity.

initial_limit 200 122 118 90 85

possible 39601 14641 13689 7921 7056

TASKS generated 5808 1349 1202 399 280

useful 286 286 286 285 280

useful / generated 4.9 % 21.2 % 23.8 % 71.4 % 100 %

Table 4: G(12) = 85 - Tasks: possible / generated / useful.

For the same reason, we added a preprocessing treatment that consists (if used)
in generating a rst consistent sequence under the limit: it immediately improves
the bound, especially if the initial limit is far from the optimal one. It allows to
decrease considerably the number of generated tasks and therefore to improve the
ratio of useful tasks, with quite no computational effort for our problem. The
effect of this preprocessing treatment can be observed in table 4: with an initial
value of 200, the pretreatment gives an initial limit of 122, which changes the ratio
of useful tasks from 4.9% to 21.2%.

SIU 2005

184 Michaël Krajecki, Christophe Jaillet, Alain Bui

4.4.4. Load balance

Because of the tasks irregularity, the OpenMP static and static modulo schedules
can’t have good results: for example for the computation of G(13) using 32 pro-
cessors with a limit14 of 147 and dividing the search tree with depthlevel 3, one
nishes in about 60 seconds and another one in about 140).

Table 5 presents the results of the computation of G(14) using 4 to 32 proces-
sors with a limit of 181 and dividing the search tree with depthlevel 3, comparing
the OpenMP dynamic schedule on a parallel loop (Dyn) with the OpenMP server
initiated, client server and dynamic jumping client server parallel region sched-
ules (SI, CS and DJCS), and the MPI client server schemes (CS and DJCS). Note
that the sequential execution takes 31450 seconds.

OpenMP MPI

Procs Dyn SI CS DJCS CS DJCS

4 7643.7 7501.1 10951.9 7642.8 10258.1 10298.2

8 3852.2 3814.6 3971.5 3873.5 4582.7 4474.6

16 1972.0 1997.9 2008.3 2184.5 2216.5 2102.3

32 1147.7 1038.1 1064.1 1125.0 1115.0 1036.5

Table 5: Execution times in seconds for G(14), k = 3, limit = 181.

Using a parallel for loop with a dynamic schedule gives very good results (with
an efciency of about 93%); adapted OpenMP strategies are really efcient too,
but if they don’t have to use too much memory, which is the case of the dynamic
client server schedule.

The MPI codes do not suffer of the OpenMP codes irregularity, with an ef-
ciency of 94.5% for the dynamic client server schedule (88% for the simple client
server) while the optimal efciency is equal to 96.9% taking the server into ac-
count. The penalty induced by the server is less important when the number of

14The limit is set to 200 and a preliminary treatment constructs a rst solution of length 147
instantly.

SIU 2005

Parallel Tree Search for Combinatorial Problems 185

processors increases, and may become tiny with a very large number of proces-
sors.

4.4.5. Further results

Using a great number of processors makes it possible to construct optimal Golomb
rulers for larger instances. For example, 32 processors gave the result for G(15)
(with initial_limit=200 and depthlevel=3) in 4h40, and even in 1h25 with 128
processors.

As shown by our current experiments, the adapted data structures and methods
used by the McCracken Shift Algorithm [DRM98] may allow to reach really good
results.

5. Conclusion and perspectives

The heart of this paper is to give a generic approach for the parallel resolution
of combinatorial problems and combinatorial optimization ones: these are mod-
elized with a tree search strategy and then the algorithm is parallelized. For this
a set of tasks is generated by dividing the search space. The tasks are subprob-
lems which are independent one from another and can be treated with the same
algorithm as for the global problem; the most interesting factor of the parallel
algorithm is to balance the tasks between the processors.

We applied this theoretical approach to two particular problems and showed
that the efciencies are good in practice. The applications have been written in C
and parallelized using OpenMP or MPI.

The key advantage of OpenMP is to offer a user-friendly tool to parallelize the
sequential algorithm: it enables the programmer to develop a parallel application
from de sequential one with minimum changes. The experiments provided are
those led on a 256 processors SGI’3800. These show that the OpenMP parallel for
loop with a dynamic schedule is an effective solution. The use of OpenMP parallel
region or MPI are also possible, but the programmer has to make some efforts and
change some of the code structure to design an efcient parallel application.

SIU 2005

186 Michaël Krajecki, Christophe Jaillet, Alain Bui

A major drawback of OpenMP highlighted by our experiments is that the ex-
ecution times for the same problem can be very different from an execution to
another. It is due to the memory allocation management and we brought a low
cost solution to this computation time irregularity.

We proposed a specic dynamic load balancing algorithm (DJCS), based on a
client-sever one, taking advantage of the combinatorial optimization specicities.
Both with shared memory or message passing, this strategy obtains very good
efciencies with the OGR construction problem.

The main perspective of this work is to write an hybrid solution based on shared
memory and message passing to solve the next instances more quickly and to com-
pute open ones. As the computation effort grows geometrically with the size of
the problem, the execution on a large cluster of SMP (Symmetric Multi-Processor)
should be considered as an interesting alternative to solve one of the rst open in-
stances in an acceptable range of time: inside a SMP node, the parallelism should
be managed with a shared memory model; outside, a message passing solution
would enable the optimization collaboration and the load management between
the differents nodes.

Another interesting perspective of this work would be to develop a performance
evaluation model for the parallel resolution of combinatorial problems.

Acknowledgments

This work was partly supported by "Romeo"15, the high performance computing
center of the University of Reims Champagne-Ardenne and the "Centre Informa-
tique National de l’Enseignement Supérieur"16 (CINES, France).

References

[BG77] W. S. Bloom and S. W. Golomb. Applications of Numbered Unidirected Graphs. In
Proceedings of the IEEE, second European Workshop on OpenMP, pages 562–570,
Edinburgh, Scotland, 1977.

15http://www.univ-reims.fr/Calculateur
16http://www.cines.fr

SIU 2005

Parallel Tree Search for Combinatorial Problems 187

[BvR95] F. Bacchus and P. van Run. Dynamic Variable Ordering in CSPs. In Proceedings of the
first International Conference on Principles and Practice of Constraint Programming,
pages 258–274, Cassis, France, 1995.

[CDK+00] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and R. Menon. Parallel
Programming in OpenMP. Morgan Kaufmann, 2000.

[Chm96] A. Chmeiss. Réseaux de contraintes : algorithmes de propagation et de décomposi-
tion. PhD thesis, Université des Sciences et Techniques du Languedoc, Aix-Marseille
I, France, 1996.

[Dec90] R. Dechter. Enhancement Schemes for Constraint Processing: Backjumping, Learn-
ing, and Cutset Decomposition. Journal of Artificial Intelligence Research (AI),
41(3):273–312, 1990.

[DP89] R. Dechter and J. Pearl. Tree Clustering for Constraint Networks. Artificial Intelli-
gence, 38:353–366, 1989.

[DRM98] A. Dollas, W. Rankin, and D. McCracken. A new Algorithm for Golomb Ruler
Derivation and Proof of the 19 Marker Ruler. IEEE Trans. Inform. Theory, 44:379–
382, 1998.

[FD95] D. Frost and R. Dechter. Look-Ahead Value Ordering for Constraint Satisfaction
Problems. In Proceedings of the Fourteenth International Joint Conference on Artifi-
cial Intelligence (IJCAI’95), Montreal, Quebec, August 20-25, 1995, pages 600–606,
1995.

[FH95] E. C. Freuder and P. D. Hubbe. Extracting Constraint Satisfaction Subproblems. In
Proceedings of the fourteenth International Joint Conference on Artificial Intelli-
gence, pages 548–555, Montreal, Quebec, 1995.

[Gar56] Martin Gardner. Mathematics, Magic and Mystery. 1956.
[Gar72] M. Gardner. Mathematical Games. Scientic American, 1972.
[GLS99] G. Gottlob, N. Leone, and F. Scarcello. A Comparison of Structural CSP Decomposi-

tion Methods. In Proceedings of IJCAI’99, pages 394–399, 1999.
[HE80] R. M. Haralick and G. L. Elliot. Increasing the Search Efciency for Constraint Sat-

isfaction Problems. Artificial Intelligence, 14:263–313, 1980.
[HHMS97] Z. Habbas, F. Herrmann, P.-P. Mérel, and D. Singer. Load Balancing strategies for Par-

allel Forward Search Algorithm with Conict Based Backjumping. . In Proceedings
of the International Conference on Parallel and Distributed Systems, Séoul, Korea,
1997.

[HKS00] Z. Habbas, M. Krajecki, and D. Singer. Parallel Resolution of CSP with OpenMP. In
Proceedings of the 2nd European Workshop on OpenMP (EWOMP 2000), pages 1–8,
Edinburgh, Scotland, 2000.

[HKS01] Z. Habbas, M. Krajecki, and D. Singer. The Langford Problem: A Challenge for Par-
allel Resolution of CSP. In Fourth International Conference on Parallel Processing

SIU 2005

188 Michaël Krajecki, Christophe Jaillet, Alain Bui

and Applied Mathematics (PPAM’2001), volume 2328 of Lecture Notes in Computer
Science, pages 789–797. Springer-Verlag, Naleczow, Pologne, September 2001.

[HKS02] Z. Habbas, M. Krajecki, and D. Singer. Parallelizing Combinatorial Search in Shared
Memory. In Proceedings of the fourth European Workshop on OpenMP, Roma, Italy,
2002.

[HKS04] Z. Habbas, M. Krajecki, and D. Singer. Decomposition Techniques for Parallel Reso-
lution of Constraint Satisfaction Problems in Shared Memory: a Comparative Study.
International Jounral of Computational Science and Engeniering (IJCSE), to appear,
2004.

[Jai05] Ch. Jaillet. Résolution parallèlle de problèmes combinatoires en mémoire partagée.
PhD thesis, Université de Reims Champagne-Ardenne, France, 2005.

[JK04a] Ch. Jaillet and M. Krajecki. Constructing Optimal Golomb Ruler in Parallel. In Pro-
ceedings of the 6th European Workshop on OpenMP (EWOMP 2004), pages 29–34,
Stockholm, Sweden, October 2004.

[JK04b] Ch. Jaillet and M. Krajecki. Solving the Langford Problem in Parallel. In Proceedings
of the 3rd International Symposium on Parallel and Distributed Computing (ISPDC
2004), pages 83–90, Cork, Ireland, July 5-7 2004. IEEE Computer Society.

[Kas89] S. Kasif. Parallel Solutions to Constraint Satisfaction Problems. In Proceedings of
the first International Conference on Principles of Knowledge Representation and
Reasoning, pages 180–188, Toronto, Ontario, 1989.

[KFJ+05] M. Krajecki, O. Flauzac, Ch. Jaillet, P.-P. Mérel, and R. Tremblay. Solving an open
Instance of the Langford Problem using CONFIIT: a Middleware for Peer-to-Peer
Computing. Parallel Processing Letters, to appear, 2005.

[KFM04] M. Krajecki, O. Flauzac, and P.-P. Mérel. Focus on the Communication Scheme in
the Middleware CONFIIT Using XML-RPC. In Proceedings of the 18th International
Parallel and Distributed Processing Symposium (IPDPS 2004), Santa Fe, New Mex-
ico, USA, April 26-30 2004. IEEE Computer Society.

[Kra99] M. Krajecki. An Object Oriented Environment to Manage the Parallelism of the FIIT
Applications. In V. Malyshkin, editor, Parallel Computing Technologies, 5th Inter-
national Conference, PaCT-99, volume 1662 of Lecture Notes in Computer Science,
pages 229–234. Springer-Verlag, St. Petersburg, Russia, September 1999.

[LHB92] Q. Y. Luo, P. G. Hendry, and J. T. Buchanan. A New Algorithm for Dynamic Dis-
tributed Constraint Satisfaction Problems. In Proceedings of the fifth Florida Artificial
Intelligence Research Symposium, pages 52–56, 1992.

[Mac77] A. K. Mackworth. Consistency in Networks of Relations. Artificial Intelligence, 8:99–
118, 1977.

SIU 2005

Parallel Tree Search for Combinatorial Problems 189

[Mér98] P.-P. Mérel. Les problèmes de satisfaction de contraintes : recherche n-aire et paral-
lélisme – Application au placement en CAO. PhD thesis, Université de Metz, France,
1998.

[Mil99] J.E. Miller. Langford’s Problem. Online, 1999.
http://www.lclark.edu/ m̃iller/langford.html.

[MM88] R. Mohr and G. Masini. Good Old Discrete Relaxation. In Proceedings of ECAI’88,
pages 651–656, 1988.

[Mon74] U. Montanari. Networks of Constraints: Fundamental Properties and Applications to
Pictures Processing. Information Sciences, 7:95–132, 1974.

[Ope05] OpenMP Architecture Review Board. OpenMP Application Program Interface, ver-
sion 2.5, May 2005. available at http://www.openmp.org.

[Pac96] P. Pacheco. Parallel Programming with MPI. Morgan Kaufmann, 1996.
[Pro93] P. Prosser. Hybrid Algorithms for the Constraint Satisfaction Problem. Computational

Intelligence, 9:268–299, 1993.
[RAASR99] A. Ruiz-Andino, L. Araujo, F. Sàenz, and J. Ruz. Parallel Implementation of Con-

straint Solving. In Proceedings of the 5th. Intenational Conference PaCT-99, LNCS-
1662, pages 466–471, St.Petersbourg, Russia, 1999.

[Ran93] W. Rankin. Optimal Golomb Rulers: An Exhaustive Parallel Search Implementation,
Master’s thesis, Duke University, 1993.

[RK87] V. N. Rao and V. Kumar. Parallel Depth First Search. Part I. Implementation. Interna-
tional Journal of Parallel Programming, 16(6):479–499, 1987.

[RS90] Sanjay Ranka and Sartaj Sahni. Hypercube Algorithms with Applications to Image
Processing and Pattern Recognation. Springer-Verlag, 1990.

[SF94] D. Sabin and E. C. Freuder. Contradicting Conventional Wisdom in Constraint Satis-
faction. In Proceedings of the eleventh European Conference on Artificial Intelligence,
pages 125–129, Amsterdam, Netherlands, 1994.

[SHL95] S. Soliday, A. Homaifar, and G. Lebby. Genetic Algorithm Approach to the Search
for Golomb Rulers. In L. Eshelman, editor, Proceedings of the Sixth International
Conference on Genetic Algorithms, pages 528–535, San Francisco, CA, USA, 1995.
Morgan Kaufmann.

[Sim83] J. E. Simpson. Langford Sequences: perfect and hooked. Discrete Math, 44(1):97–
104, 1983.

[Smi00] B. Smith. Modelling a Permutation Problem. In Proceedings of ECAI’2000, Workshop
on Modelling and Solving Problems with Constraints, RR 2000.18, Berlin, Germany,
2000.

[Smi01] B. Smith. Dual Models of Permutation Problems. In Toby Walsh, editor, Proceedings
of CP 2001, 7th International Conference on Principles and Practice of Constraint

SIU 2005

190 Michaël Krajecki, Christophe Jaillet, Alain Bui

Programming, volume 2239 of Lecture Notes in Computer Science, pages 615–619,
Paphos, Cyprus, November 26 - December 1, 2001. Springer.

[SSW99] B. Smith, K. Stergiou, and T. Walsh. Modelling the Golomb Ruler Problem. In Six-
teenth International Joint Conference on Artificial Intelligence (IJCAI 99), Workshop
on Non Binary Constraints., Stockholm, Sweden, August 2, 1999.

[Ter01] C. Terrioux. Cooperative Search and Nogood Recording. In Proceedings of IJCAI’01,
International Joint Conference on Artificial Intelligence, pages 260–265, Seattle,
USA, 2001.

[Wal93] R. J. Wallace. Why AC-3 is Almost Always Aetter than AC-4 for Establishing Arc-
consistency in CSPs. In Proceedings of the thirteenth International Joint Conference
on Artificial Intelligence, pages 239–245, Chambéry, France, 1993.

[Wal01] T. Walsh. Permutation Problems and Channelling Constraints. Technical Report
APES-26-2001, APES Research Group, January 2001. available at http://www.dcs.st-
and.ac.uk/ ãpes/apesreports.html.

<!– Local IspellDict: english –> <!– Local IspellPersDict: /emacs/.ispell-english
–>

Authors addresses:
CReSTIC, LICA

Département de Mathématiques et Informatique

UFR Sciences Exactes et Naturelles

Université de Reims Champagne-Ardenne

Campus du Moulin de la Housse

BP 1039 - 51687 REIMS Cedex 2 { michael.krajecki, christophe.jaillet, alain.bui} @univ-

reims.fr

SIU 2005

